(C = )Tj /F9 1 Tf 1.4843 Tc 9.5 0 0 9.5 346.1622 326.2915 Tm (53)Tj 0 Tc (A = )Tj BT (|)Tj /F7 1 Tf 0 Tc -0.9937 -2.9008 TD 307.172 222.064 m -0.6 -1.2 TD 1.2008 Tc [(R)-99.9(\(A\) = 2)]TJ /F9 1 Tf (|)Tj 11.4 w (13)Tj (a)Tj /Im9 Do 1.4842 Tc [(v)19.7(ersa,)-157(su determinante tiene que ser distinto de cer)24.8(o)29.9(. 0.6008 Tc 9.5 0 0 9.5 319.2898 629.099 Tm 0 Tc 0 Tc 1 i W n /F16 1 Tf 9.975 0 0 28.5 358.9562 183.7664 Tm 0.1 Tc 19. (34)Tj [(0Ð)784.3(7Ð)784.3(2)]TJ f (|)Tj -0.0001 Tc 9.5 0 0 9.5 172.093 364.6697 Tm /F9 1 Tf 0.1 Tc (A)Tj (\()Tj T* S /F7 1 Tf -0.6 -1.3417 TD ET (dc)Tj 0 Tc /F9 1 Tf /F9 1 Tf /F2 1 Tf (Solucin:)Tj (§)Tj S (98. 9.5 0 0 9.5 107.9217 308.4362 Tm [(H)5.8(alla la matriz inv)5.8(ersa de:)]TJ -0.0002 Tc 0.8887 0 TD (51. /F7 1 Tf 0 Tc /F7 1 Tf -0.0001 Tc 0.8842 Tc 7.125 0 0 7.125 321.9624 685.2396 Tm (TEMA 3. 9.975 0 0 28.5 203.3601 237.7398 Tm 439.124 810.602 18.851 -32.315 re 1 g [(0Ð)500.8(4)]TJ (© Grupo Editorial Bruo, S.L. /GS1 gs /F2 1 Tf (21)Tj -2.6114 -2.9008 TD << 307.172 422.71 m /F12 1 Tf -7.1439 -1.8858 TD [(Ð7)-1125.4(6)-525.5(Ð)0(8)]TJ 0.6008 Tc 0 Tc /F8 1 Tf 1 g (31)Tj -0.0002 Tc Halla el valor de estos determinantes: a) b) a) = 14 b) = 1000 Página 83 3. 0 Tc [(= Ð)-3646(=)0( 35)]TJ [(= = )3610.4(=)]TJ 8.645 0 0 24.7 416.3052 679.9523 Tm 9.5 0 0 9.5 67.5023 576.9911 Tm 9.5 0 0 9.5 312.5575 404.5542 Tm 9.5 0 0 9.5 458.1057 150.7628 Tm -0.0002 Tc (l)Tj 0 Tc /F7 1 Tf %!$&())*,-..00/**())''" '3@N^{®ÂÍÖÞåëîñòòôôôðèÛ˶k\QG?831,++,.-0579=>FGJLJIOHGCC=842,('! S 9.5 0 0 9.5 58.7878 505.9283 Tm 0.6242 -1.2 TD -0.6 -1.3417 TD 0 -1.2 TD endstream /F7 1 Tf 17.1 823.647 m (\))Tj /F7 1 Tf 0 Tc (§)Tj /F9 1 Tf /F9 1 Tf f 0 Tc 0 Tc 1.4842 Tc 8.6628 -2.9008 TD /F7 1 Tf 9.5 0 0 9.5 443.4655 526.3195 Tm (Solucin:)Tj 0 Tc -0.0001 Tc (42)Tj 9.5 0 0 9.5 114.9771 344.8354 Tm (|)Tj T* ET Se ha encontrado dentro â Página 156Determinar los menores y los cofactores de todos los elementos de las siguientes matrices : -1 5 3 17 2 42 ) U = 43 ) V ... 5 1 2 1 dij -1 3 3 10 20 45 ) Calcular el siguiente determinante aplicando cofactores : -3 3 2 0 41 -5 1 0 0 46 ... W n f 9.5 0 0 9.5 312.5575 642.8348 Tm [(= \(1 2 3\) la traspuesta de la matriz E,)-164.4(calcu-)]TJ /F7 1 Tf (= = )Tj (|)Tj 0 Tw [(La matriz )99.7(A que v)19.6(erifica )-3523(A = )-2167.9(es:)]TJ 1.4745 Tc /GS1 gs (1A)Tj /F7 1 Tf 1.2184 Tc /F7 1 Tf 5.2467 -2.6159 TD S -0.0002 Tc /F1 4 0 R 11.4 0 0 11.4 54.0378 579.6766 Tm 10.925 0 0 10.925 54.0378 743.4916 Tm /F9 1 Tf 458.644 320.144 l /F9 1 Tf 7.125 0 0 7.125 379.9756 512.0983 Tm /F9 1 Tf S 10.64 0 0 30.4 480.4905 620.2369 Tm /F7 1 Tf [(2Ð)784.3(5)]TJ 0 Tc 0 Tc 307.172 261.202 m 0 Tc -0.0002 Tc (A)Tj (Ð)Tj (101)Tj 9.5 0 0 9.5 54.0378 60.1064 Tm 3.4961 Tw (|)Tj 8.55 0 0 8.9775 307.1717 198.0525 Tm 9.5 0 0 9.5 322.0699 723.673 Tm (\()Tj 9.5 0 0 9.5 200.372 379.3383 Tm -0.0002 Tc (11)Tj 0.2 g 0 Tc /F9 1 Tf (Aplica la teora)Tj 9.5 0 0 9.5 328.6583 572.7266 Tm /ExtGState << >> -0.0002 Tc 67.502 409.278 224.858 -45.78 re T* (A)Tj 9.5 0 0 9.5 94.143 291.0107 Tm 0 Tc 9.5 0 0 9.5 203.0909 339.8087 Tm (ò)Tj 420.51 428.473 m 7.98 0 0 22.8 505.5552 104.0232 Tm -3.4788 0 TD (\))Tj (Solucin:)Tj -0.0001 Tc 9.975 0 0 39.9 417.1813 393.0836 Tm 13.644 832.2 565.566 -53.914 re /F7 10 0 R 0 -1.2 TD 7.98 0 0 22.8 210.4601 253.1019 Tm /F7 1 Tf -0.0002 Tc (y la)Tj (Ð)Tj 9.5 0 0 9.5 72.8882 448.5497 Tm 0 Tc (2)Tj (x)Tj S 538.762 70.05 40.448 -13.464 re (12)Tj 9.5 0 0 9.5 130.381 420.9895 Tm 0 -1.3417 TD 0 Tc 11.4 0 0 11.4 54.0378 742.9214 Tm /F1 1 Tf 0 Tw (dades que utilices:)Tj f 0 Tc 83.897 624.728 7.604 -7.604 re 9.5 0 0 9.5 369.4183 638.6132 Tm 0 Tc T* [(ab)-28(5)1237.2(c)]TJ 1.2008 Tc (A = )Tj 0 Tc f 0.0677 Tw -0.0001 Tc 9.5 0 0 9.5 339.8996 249.812 Tm 7.125 0 0 7.125 74.9453 662.4844 Tm 1.4842 Tc (\()Tj 1.4843 Tc 1.4843 Tc 9.5 0 0 9.5 433.289 192.6774 Tm /F9 1 Tf [(dad XA = )99.8(AX,)-168.2(donde )99.8(A = )-2748.1(,)-168.2(son de la f)9.6(orma:)]TJ [(3/2)-954(Ð)-100.1(1/2)]TJ 9.5 0 0 9.5 96.3898 309.9888 Tm (guiente igualdad:)Tj 1.4843 Tc S >> 9.975 0 0 28.5 454.2393 140.0929 Tm (Solucin:)Tj (P)Tj )Tj (|)Tj [(Ð7)-1384.2(2)-784.3(Ð)0(5)]TJ S [(08)-533.5(0)-392.7(a)1484.3( Ð)1484.3( 2)]TJ 0.7813 0 TD /F9 1 Tf 0.9 G 10.925 0 0 43.7 191.7412 276.6894 Tm 9.5 0 0 9.5 72.8882 744.714 Tm -2.5157 0 TD 0 -2.3339 TD [(9Ð)784.3(3)-600(2)]TJ 7.125 0 0 7.125 336.3978 444.158 Tm (E á E)Tj 0 -1.2 TD -0.0001 Tc (2x + 3)Tj 0 Tc f /F9 1 Tf /F7 1 Tf -0.2913 -1.2 TD -1.4633 0 TD (a11)Tj 9.5 0 0 9.5 86.3527 359.8965 Tm /F7 1 Tf BT B: 2 kg de peras, 2 kg de manzanas y 4 kg de naranjas. ET (Solucin:)Tj (= )Tj 9.975 0 0 39.9 146.9581 244.4329 Tm 285.628 238.26 l AU Ejercicios Resueltos de … 7.3701 -2.9008 TD 1.5664 0.1 TD 326.695 370.232 8.079 -8.079 re -0.0001 Tc f 1 i -0.0001 Tc S /F7 1 Tf 12.572 1.8394 TD q /F7 1 Tf [(Ð5)-500.8(Ð6)]TJ /F9 1 Tf (54)Tj 54.038 103.998 m 9.975 0 0 28.5 228.0729 281.014 Tm -0.0001 Tc 9.5 0 0 9.5 474.6198 289.9793 Tm f -0.3 -1.2 TD -0.6 -1.3417 TD (la identidad M)Tj )-182.6(Como se m)9.6(u)-0.1(ltipli-)]TJ (|)Tj W n 9.5 0 0 9.5 54.0378 60.1064 Tm BT 24.416 810.602 18.85 -32.315 re (13)Tj /F8 1 Tf 313.904 291.059 m [(Se sabe que la siguiente matriz M tiene de rang)9.6(o 1)]TJ (Solucin:)Tj 0.6 -0.1 TD Q [(3/2)-954(Ð)-100.1(1/2)]TJ 11.4 w (|)Tj -0.0001 Tc /F9 1 Tf 0 Tc (Halla el determinante de la siguiente matriz:)Tj 0 Tw 0 -1.2 TD [(2Ð)784.3(3)-600(5)]TJ -0.0001 Tc 9.5 0 0 9.5 72.8882 743.3638 Tm 3 Para la primera columna que contiene 3 ceros, aplicamos la matriz reducida y obtenemos. 0 Tc (\))Tj [(P)25(o)0.2(r)24.8(que las dos columnas son pr)24.8(opor)24.8(cionales. 0.9842 Tc /F12 45 0 R /F1 1 Tf /F18 1 Tf 8.9775 0 0 25.65 401.8725 243.9442 Tm -0.0001 Tc 0.1 Tc Se ha encontrado dentro â Página 44El determinante de M, se llama menor de d Asimismo, para todo a, en la matriz existe un escalar llamado cofactor denotado A que se define asÃ: A, = (âl)". ... Calcular el determinante de la siguiente matriz B: l â2 â8 B = â4 9 ll 3 ... T* 8.55 0 0 8.9775 313.5304 450.3376 Tm 0.0001 Tw -0.6 -1.2 TD 10.64 0 0 30.4 203.5133 236.0778 Tm 0 Tw 9.5 0 0 9.5 84.0633 303.84 Tm /Im2 84 0 R f 0.6 -1.2 TD (Ð1)Tj (47)Tj 0.8843 Tc /F7 1 Tf 9.5 0 0 9.5 171.5847 724.032 Tm (|)Tj -0.6 -1.2 TD (005)Tj 0.6 -0.1 TD 1.4842 Tc S S 538.762 70.05 40.448 -13.464 re -0.0001 Tc 0.8267 0 TD 0 Tc [(31)-7(0)]TJ -0.0001 Tw 5.503 0.1 TD /Height 781 (= )Tj (a)Tj 44.9875 0 TD 7.98 0 0 22.8 375.3587 139.2859 Tm 0 Tw 0 -7.5024 TD 1.4842 Tc (A)Tj 93.1 w 9.5 0 0 9.5 351.1035 512.2785 Tm /F8 1 Tf 0 Tc 10.925 0 0 10.925 164.0169 698.4247 Tm -0.6 -1.2 TD 9.975 0 0 28.5 148.6561 97.2677 Tm -0.0002 Tc -0.0001 Tc [(214)600(Ð)1384.3(3)]TJ 9.5 0 0 9.5 131.8029 504.4163 Tm 9.975 0 0 39.9 90.4113 110.7064 Tm 0.6 -1.3417 TD (3)Tj 0 Tw 10.925 0 0 10.925 58.7878 543.5613 Tm (\))Tj stream (|)Tj /F7 1 Tf /F9 1 Tf 9.5 0 0 9.5 96.8282 340.3367 Tm /F8 1 Tf 16.754 1.2087 TD f -0.0002 Tc 279.3 w /F9 1 Tf -0.0001 Tc (mar )Tj (= )Tj /F7 1 Tf 0 Tc (a)Tj (800)Tj /F7 1 Tf W n ET restamos la multiplicación de los de la diagonal secundaria. 9.5 0 0 9.5 100.1349 132.4736 Tm >> (\()Tj 0 Tc 538.762 493.487 l /F9 1 Tf 8.55 0 0 8.9775 307.1717 545.1136 Tm (\()Tj -11.5196 0 TD 0 Tc (10)Tj (3 se)Tj 8.9775 0 0 25.65 171.9061 488.3954 Tm (\()Tj 8.7875 0 0 35.15 388.1893 546.1846 Tm BT BT -0.0001 Tc 307.172 367.359 231.59 -96.946 re /F7 1 Tf 0 Tc 0.7425 Tc (25)Tj 0.1 Tc /F8 1 Tf -10.1036 0 TD -7.4532 -1.3769 TD 9.5 0 0 9.5 468.1205 567.573 Tm (|)Tj /F8 1 Tf 7.125 0 0 7.125 202.1427 693.2166 Tm 0 Tc (3)Tj -0.0002 Tw /F8 1 Tf /F7 1 Tf (13)Tj 10.925 0 0 43.7 406.7082 462.5006 Tm 0 Tw 9.5 0 0 9.5 404.4431 253.3556 Tm 13.05.- Sea M una matriz cuadrada de orden 3 tal que su determinante es det (M) = 2. /F7 1 Tf 9.975 0 0 28.5 97.0004 247.9808 Tm -0.0001 Tc (|A)Tj (11)Tj 0.1 Tc T* -0.0001 Tc -7.2463 -3.1842 TD (|)Tj -0.0002 Tc W n (SOLUCIONARIO)Tj q (\()Tj (1)Tj 9.2625 0 0 37.05 215.4392 377.5364 Tm (Piensa y calcula )Tj (B = )Tj 0 Tc (\))Tj /XObject << 14 0 obj (|)Tj -0.0077 Tw 0.1093 Tw 0.7808 -1.2 TD ET (123)Tj /Im5 Do /GS1 gs /F9 1 Tf 2.9292 Tw /F9 1 Tf 8.55 0 0 8.9775 54.0378 513.0588 Tm 1.4843 Tc [(Halla el rang)9.6(o de la siguiente matriz:)]TJ )Tj 0.8842 Tc /F9 1 Tf 9.975 0 0 28.5 138.9297 548.7758 Tm (019)Tj 1.4842 Tc (= )Tj S 0 Tc /F7 1 Tf -10.441 0 TD [(10)1166.9(Ð)2234.6(1)]TJ 0.6 -1.3417 TD (1x)Tj (Ð 2M = )Tj 9.5 0 0 9.5 72.8882 638.7592 Tm 7.125 0 0 7.125 451.3889 260.4604 Tm This paper. ET -0.0002 Tc 9.975 0 0 28.5 205.0838 297.7664 Tm 7.98 0 0 22.8 459.3644 571.0488 Tm 0 -1.3417 TD 0 g /F7 1 Tf T* 9.5 0 0 9.5 83.713 188.4491 Tm /F6 9 0 R 6.0365 0 TD (Sabiendo que:)Tj f (TEMA 3. 0.8843 Tc 8.9775 0 0 25.65 97.5734 680.9279 Tm [(1Ð)984.2(1)-500.1(1)]TJ (3. S -0.0003 Tc 0 Tc 406.31 370.502 m [(Ð)1384.3(723)]TJ 0.8842 Tc /F7 1 Tf )]TJ 0 Tc 0 Tw -0.0002 Tc /F7 1 Tf )Tj )]TJ 0 Tc 8.55 0 0 8.9775 71.1682 305.3904 Tm /F9 1 Tf (|)Tj 1 g 9.975 0 0 28.5 108.1733 189.601 Tm -0.0001 Tc (1)Tj 0.1 Tc 0.0307 Tc [(22)-108.2(0)-531.9(a)]TJ (|)Tj 58.616 86.207 l 0.6 -0.1 TD (31)Tj 0 Tw << 0 Tw 7.125 0 0 7.125 325.6262 268.7595 Tm 7.125 0 0 7.125 79.2246 608.6949 Tm /F7 1 Tf /F12 1 Tf 0 Tc (|)Tj (42)Tj 9.5 0 0 9.5 59.4236 712.4851 Tm W n 0.0697 Tw (\))Tj (£)Tj /F7 1 Tf 10.925 0 0 43.7 415.593 203.5696 Tm 0.8843 Tc 10.925 0 0 43.7 89.6942 144.2879 Tm 1.2184 Tc 7.125 0 0 7.125 197.0493 341.2435 Tm 1.4843 Tc endobj 1.2008 Tc Se ha encontrado dentro â Página 211Calcula los determinantes siguientes: 2 1 1 5 2 0 0 3 â1 0 0 0 â1 0 2 1 2 â1 2 3 0 2 0 33â23'16'23 31'0' 1532'_2' 1 2 1 2 3 1 4 2 2 7 5 3 3. Calcula los determinantes siguientes: 2 e'â 0 a ... [(|A| = )-6147.2(= 103)]TJ /F9 1 Tf 0 Tc 0 Tw 7.125 0 0 7.125 361.0164 495.0406 Tm 0 g 0 G 1 g -0.083 -1.2 TD (|)Tj Ejercicio: Calcula el siguiente determinante: 7.125 0 0 7.125 344.9017 515.4135 Tm 0.8843 Tc BT [(29)599.9(Ð)1384.2(8)]TJ 538.762 721.466 l 307.172 516.76 m ()Tj [(de)-228.7(f)]TJ 8.645 0 0 24.7 68.2374 396.1632 Tm (\()Tj (\))Tj (\()Tj 2.3347 Tc 538.762 277.987 l (01)Tj (768)Tj 9.5 0 0 9.5 382.1941 582.3875 Tm (101)Tj 17.2399 0 TD S /F18 83 0 R (\))Tj 0 Tc /F9 12 0 R 9.5 0 0 9.5 71.9619 218.4673 Tm 3.6331 0 TD 127.3 w (\))Tj 0.6242 -1.2 TD (21. q 0 Tc /F7 1 Tf 0.25 g BT 1.4843 Tc 0.0442 Tw T* (\()Tj [(Ð1)-1100.8(4)]TJ 0 Tc 58.077 267.98 m 0 Tc (Dada la siguiente matriz:)Tj -0.0709 -2.9008 TD -0.6 -1.2 TD 0 Tc /F9 1 Tf /F8 1 Tf 0.1 Tc -0.0001 Tw /F7 1 Tf S -0.6 -1.2 TD >> 0 Tw 0 Tc S 0 -1.2 TD T* -0.6 -1.2 TD /F9 1 Tf )Tj )Tj /F7 1 Tf (t)Tj [(3c Ð d)-748(6c + 2d)]TJ 1.4843 Tc /F7 1 Tf 10.925 0 0 10.925 363.3596 631.8685 Tm ET 9.5 0 0 9.5 97.9729 308.1565 Tm [(1Ð)784.2(1)-600.1(2)]TJ (12)Tj /F7 1 Tf T* [(X = )99.6(A)]TJ 9.5 0 0 9.5 326.022 524.5262 Tm /F7 1 Tf (1)Tj Q (\))Tj 11.4 0 0 11.4 54.0378 738.882 Tm 7.6 0 0 7.6 327.4897 485.0649 Tm 538.762 407.034 l (|)Tj (\))Tj /F7 1 Tf ET 0.25 -1.2 TD )]TJ (57)Tj T* (2)Tj 13.644 832.145 565.512 -799.795 re 11.4 0 0 45.6 152.6916 462.787 Tm q -0.0001 Tc )Tj /F9 1 Tf [(7Ð)1084.2(3)]TJ -0.0001 Tc (= )Tj 0 -1.2 TD 0.6 -0.1 TD 7.98 0 0 22.8 467.5159 387.8971 Tm 9.5 0 0 9.5 324.3333 709.662 Tm /F7 1 Tf T* Se ha encontrado dentro â Página 309 D ' = ani ann ani + x ann + x Descompongamos D'en dos determinantes respecto de la primera fila , cada uno de estos en dos ... ( Apg -- * ) an Calcular los siguientes determinantes reduciendo a la forma triangular " ) ; 279 . (a0)Tj /F9 1 Tf /F9 1 Tf (|)Tj 0.9 G 9.5 0 0 9.5 201.5139 282.2893 Tm -0.0001 Tc 0.9 G (ò)Tj 165.3 w 1.3146 Tc 0 Tw (\()Tj (XA + B = C)Tj (|B)Tj S 171.223 580.153 l /F7 1 Tf (\()Tj 9.5 0 0 9.5 72.8882 411.7465 Tm 0 Tc << (103. /F9 1 Tf 8.7875 0 0 35.15 387.5161 313.0233 Tm 342.11 123.742 l -0.0001 Tc 9.5 0 0 9.5 72.8882 592.2809 Tm 8.7875 0 0 35.15 382.1302 442.1035 Tm 54.038 696.258 m 0.0652 Tw -1.4633 0 TD )Tj 7.844 -2.3339 TD 0 -1.2 TD /F9 1 Tf [(6Ð)784.3(3)-600(7)0.1(Ð)784.3(2)]TJ -0.0079 Tw [(3Ð)784.3(4)-600(7)]TJ /F7 1 Tf 1.2184 Tc 8.7875 0 0 35.15 372.823 654.0022 Tm [(Ð4)-1384.3(2)-1384.2(1)]TJ 0 -4.3181 TD -3.9062 -3.1843 TD T* /F7 1 Tf [(10)599.9(Ð)1384.2(3)]TJ (32)Tj 9.5 0 0 9.5 369.4183 561.3267 Tm 9.5 0 0 9.5 107.5522 395.8213 Tm endobj /F1 4 0 R -0.0002 Tc W n -0.0002 Tc (Solucin:)Tj (|)Tj [(X = )-8768.6(= )]TJ (|)Tj (\()Tj f (X)Tj Si en una matriz cuadrada multiplicamos por un mismo número todos los elementos de la matriz, su determinante queda multiplicado por ese número elevado al orden de la matriz, en este caso, orden 3. 538.762 601.092 l /F7 1 Tf 0.0001 Tw (|)Tj f 0 Tc 0 Tw -0.0001 Tw /F7 1 Tf 9.5 0 0 9.5 378.2958 147.21 Tm -0.0003 Tc (|)Tj S /F9 1 Tf 0.8843 Tc 0.1 Tc 9.5 0 0 9.5 67.5023 414.0699 Tm -0.0002 Tc 54.038 398.989 m -0.5 -1.2 TD /F7 10 0 R 414.396 320.144 l (32. [(04)141.8(7)458.3(Ð)1384.3(2)]TJ 1.2008 Tc 0 Tw 1.484 Tc /F7 1 Tf (|)Tj 1.4843 Tc (Ð1)Tj 0 -1.2 TD 13.59 832.2 565.566 -53.914 re (B)Tj 6.4005 0.1 TD 7.125 0 0 7.125 86.3789 207.5094 Tm 0 Tw 0 Tw (Solucin:)Tj -5.1809 -2.3338 TD -0.6 -1.3417 TD 7.125 0 0 7.125 65.76 308.5062 Tm 0.8843 Tc -0.0709 -2.9008 TD /F9 1 Tf 1 g T* /F7 1 Tf 0 Tw 1.4842 Tc 96 0 obj [(a\))-384.2(Como )99.7(A es una matriz cuadrada,)-257.1(para que tenga in-)]TJ q (94)Tj /F7 1 Tf (|)Tj 0.8842 Tc 0.9 g (\()Tj [(= = )3496(1)]TJ 9.5 0 0 9.5 315.4945 388.59 Tm (21)Tj (A)Tj /F18 1 Tf 0.3 g /ExtGState << (46. 0.3 g 0.0001 Tw 36.1 w -0.0003 Tc (|)Tj 0 Tw T* -0.0002 Tc )]TJ 9.975 0 0 28.5 238.476 256.3674 Tm -2.2494 -1.2 TD -0.6 -1.2 TD 9.5 0 0 9.5 435.7791 406.4497 Tm (Si a )Tj 81.7 w >> /F7 1 Tf 0.1 Tc (10)Tj /F9 1 Tf 538.762 745.658 l 1.2346 Tc (\()Tj (Windows Derive )Tj 0.5 -1.2 TD 17.1 823.647 m 8.7875 0 0 35.15 382.8035 372.1326 Tm /F9 1 Tf 0 Tc /F9 1 Tf 17.1 0 0 17.1 54.0378 766.4883 Tm T* (A)Tj -4.2738 -3.1843 TD -0.4732 0 TD 9.5 0 0 9.5 111.4375 388.2811 Tm (|)Tj 307.172 196.392 m [(á B = )-7634.7(= )]TJ (= )Tj -0.6 -1.3417 TD -11.6954 -2.2 TD 9.5 0 0 9.5 72.8882 614.4526 Tm 0 -1.3417 TD 0.1 Tc 8.7875 0 0 35.15 142.9508 639.0416 Tm (|)Tj 0 Tw 10.925 0 0 43.7 422.1216 687.1351 Tm /F8 1 Tf [(minante)-19.9(. 0 Tw 9.975 0 0 39.9 337.2056 596.7576 Tm 0 Tc /F7 1 Tf 152.581 580.153 l T* 516.269 809.652 21.543 -21.543 re 0.8618 0.1 TD 0 Tc 9.5 0 0 9.5 204.7633 481.6163 Tm 7.98 0 0 22.8 206.2305 217.56 Tm /F14 1 Tf 0 Tc q 7.125 0 0 7.125 195.312 285.4243 Tm ET (33)Tj W n 0 -1.2 TD [(a\))-384.3(R)-100(\(A\) = 2)]TJ 17.1 823.647 m S 0.1 Tc 312.558 253.168 220.819 -161.574 re Sabiendo que = 1 1 1 4 0 2 4 x y z , calcula, sin utilizar la regla de Sarrus, los siguientes determinantes, indicando en cada paso qué propiedad de los determinantes se está utilizando. q (Ð)Tj 9.5 0 0 9.5 422.7591 730.0454 Tm 1.4843 Tc /F7 1 Tf -0.0001 Tw -0.0001 Tc 9.975 0 0 28.5 77.1994 623.2842 Tm halla el valor de los determinantes por el método de menores complementarios -4 5 3 2 1 0 8 2 1 0 Tc [(3c)-727.1(2d)]TJ ET 0.1 Tc 0.2085 -1.2 TD 3.579 -0.1 TD )Tj [(c = )-2014.7(y d = )]TJ [(A = )-8965.1(B = )]TJ 9.5 0 0 9.5 72.8882 282.2893 Tm 0 Tc [(b\))-311(Para )]TJ 9.5 0 0 9.5 451.1859 386.7922 Tm 538.762 86.208 l -0.0001 Tc ... Calcula los siguientes determinantes: a) 1 2 3 1 8.55 0 0 8.9775 54.0378 516.9012 Tm T* (246)Tj 13.644 832.2 565.566 -53.914 re [(1Ð)784.3(2)]TJ -0.0001 Tc 0.1 Tc 538.762 541.5 l (Calcula mentalmente el siguiente determinante:)Tj 0 Tw /F7 1 Tf 9.975 0 0 28.5 461.9433 435.5537 Tm T* 0.6 -0.1 TD f [(= 5)-4880.5(A)]TJ (\()Tj f S )]TJ 1.2254 Tc (|)Tj [(paso hemos descompuesto el determinante en)]TJ [(Ð)1384.3(109)]TJ 0 Tc 7.98 0 0 22.8 344.1265 179.4656 Tm (|)Tj 11.1625 0 0 44.65 468.7385 423.8617 Tm (Solucin:)Tj 1 i Q /F8 1 Tf 0 Tc (a = )Tj 3 Determinantes Piensa y calcula. (Ð)Tj [(5Ð)784.3(7)-600(4)]TJ 0.8842 Tc 7.6006 -2.9008 TD (2 á 1» + 2»)Tj (|)Tj [(5Ð)500.8(6)]TJ (= )Tj )Tj 9.5 0 0 9.5 111.6187 634.5375 Tm 0.8842 Tc 0.8843 Tc -0.4732 0 TD (|)Tj 0.6 -1.2 TD 0.0308 Tc /F7 1 Tf 0 Tc 423.7 w (\()Tj 6.4088 -2.6094 TD << 0.1 Tc f 1.2184 Tc 431.719 525.259 8.079 -8.079 re -0.0001 Tc 538.762 636.908 l (a1)Tj [(Ð1)-1384.3(2)]TJ 10.925 0 0 43.7 415.593 241.233 Tm 1.9175 0 TD 0 Tc (|)Tj (47. -0.6 -1.2 TD S 0.03 842.04 595.02 -842.04 re (halla una matriz )Tj 5.5803 Tw 0.0154 Tw 0 g 4.725 Tw 0 7.6 -7.6 0 39.1611 86.2076 Tm -1.3198 -1.4835 TD 10.45 0 0 10.45 67.5023 461.4756 Tm S /F9 1 Tf /F8 1 Tf 1 g (103)Tj 0 -1.2 TD 0 Tc (A)Tj (|)Tj 307.172 539.508 m 0.6008 Tc (374 y |B| =)Tj By using this website, you agree to our Cookie Policy. (TEMA 3. [(+ )99.8(AX = I)]TJ 10.925 0 0 10.925 420.5095 429.5652 Tm (\))Tj (180)Tj (\()Tj /F12 1 Tf [(= = )3779.5(1)-4491.3(A)]TJ /F1 1 Tf f [(a = )-1589.5(y b = )]TJ 3.4961 Tw 17.1 823.647 l S 9.5 0 0 9.5 319.2898 395.5891 Tm (403)Tj 0 Tc 379.029 123.742 l 8.55 0 0 8.9775 307.1717 316.6314 Tm [(b2)950.8(b)]TJ -0.0003 Tc 0.6 -0.1 TD
Avena En Grano Como Comerla, Tatuajes De Flores En El Brazo Pequeñas, Características Del Pensamiento Pdf, Cálculo De Viga De Madera Simplemente Apoyada, Conjunto De Piedras Para Rellenar Huecos Crucigrama, Plano Aprobado Por Municipalidad, Láser Con Carbón Activado, Modelo Demanda Mala Praxis Abogado, El Tendón Supraespinoso Se Regenera,